RadarURL

조회 수 4602 추천 수 0 댓글 0
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄 첨부
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄 첨부
[경고] 아래 글을 읽지 않고 "순열과 조합"을 보면 바보로 느껴질 수 있습니다.



확률이론에서 중요한 것은 경우의 수(number of cases)를 계산하는 것이다. 경우의 수를 계산할 때 유용하게 쓸 수 있는 것이 순열(順列, permutation)과 조합(組合, combination)이다.

1. 순열(permutation)

[그림 1] 1,2,3,4를 순열한 경우의 수(출처: wikimedia.org)


 

Permutation2.png
[그림 2] 파랑공, 빨강공, 초록공을 순열한 경우의 수(출처: wikimedia.org)


순열을 이해하기 위해 [그림 1]을 먼저 보자. 자리(위치)를 고려하여 숫자 1,2,3,4를  배치한 경우의 수는 얼마인가?
첫째자리에 4가지 경우, 둘째자리에 첫째자리 숫자를 뺀 3가지 경우, ...
이렇게 헤아려가면 경우의 수는 4×3×2×1 = 4! = 24가 되는 것을 알 수 있다. 여기서 !는 계승(階乘, factorial)을 의미한다.
마찬가지로 [그림 2]의 경우는 3! = 6이 된다.
그러면 일반적으로 n가지 종류에서 r개를 순서(위치, 자리)를 고려해서 뽑는 경우는 식 (1)로 정의한다.

   perm1.png                      (1)

여기서 n ≥ r이 성립한다. 좀더 쉽게 설명하면 서로 다른 공이 n개 들어있는 큰주머니에서 r개를 뽑아서 줄을 세운 경우의 수가 순열 nPr이 된다.

2. 조합(combination)

순열을 이해하고 있으면 조합은 매우 쉽게 정의할 수 있다. 순열형태로 뽑아서 줄을 세우지 않고 모둠 형태로 한무더기로 모은 경우의 수가 조합이 된다.
예를 들면, [그림 1]에 있는 경우의 수(24가지)는 위치를 고려하고 있지만 이를 무시하고 모두 섞어버리면 가능한 경우의 수는 한 가지(1, 2, 3 ,4)로 줄어들게 된다.
이를 공식으로 표현하면 식 (2)가 된다.

   perm2.png              (2)

여기서 n ≥ r이 성립한다.
식 (2)의 좌변항이 의미하는 것은 순열과 조합의 관계이다. n개 중에서 r개를 순서(위치, 자리)를 고려하지 않고 뽑은 후(nCrr개를 다시 줄을 세우면 당연히 순열(nPr)과 결과가 같아져야 한다.
조합에 대한 다양한 공식들은 이항정리(二項定理, binomial theorem)를 이용해 구할 수 있다.
식 (2)를 좀더 쉽게 설명하면 서로 다른 공이 n개 들어있는 큰주머니에서 r개를 뽑아서 하나로 모은 경우의 수가 조합 nCr이 된다.

3. 중복순열(permutation with repetition)

순열에서 경우의 수를 구할 때 중복이 허락된다면 중복순열이 된다. 예를 들면 서로 다른 공이 n개 들어있는 큰주머니에서 뽑은 공을 다시 넣으면서(or 중복을 허락해서) r개를 뽑아서 줄을 세운 경우의 수가 중복순열 nΠr이 된다.

   perm3.png                               (3)

뽑은 공은 다시 넣기 때문에 매번 뽑을 수 있는 공의 수는 n이 되어 식 (3)과 같은 공식화가 가능하다.
중복순열 문제를 풀 때 nr을 정하기 어려운 경우가 있다. 그 때는 강제적으로 n = 1이라 가정하면 된다. 그러면 1^r = 1이 되므로 가능한 경우의 수는 1이 된다. 즉, 두 숫자중에서 하나를 n = 1이라 가정했을 때 가능한 경우의 수가 1이 되는 숫자가 n이 된다.
예를 들어, 동전(앞면과 뒷면) 던지기를 5번하는 경우를 살펴보자. n = 2로 해야 하나 n = 5로 해야 하나?
강제적으로 동전이 앞면(n = 1)만 있다고 생각해보자. 그러면 가능한 경우의 수는 1이 되므로 동전이 가질 수 있는 값(앞면 혹은 뒷면: 2)이 n이 된다.
혹은 던진 회수를 강제로 n = 1이라 해보자. 동전은 앞면과 뒷면이 나올 수 있으므로 경우의 수는 2가 되어 던진 회수는 n이 될 수 없다.

4. 중복조합(combination with repetition)

조합에서 중복이 허락된다면 중복조합이 된다. 즉, 서로 다른 공이 n개 들어있는 큰주머니에서 뽑은 공을 다시 넣으면서(or 중복을 허락해서) r개를 뽑아서 모둠 형태로 한무더기로 모은 경우의 수가 중복순열 nHr이 된다.
중복조합 공식은 식 (2)의 좌변처럼 단순하게 만들 수 없다. 예를 들어 순서를 고려해(중복순열) 동전 던지기를 2번하면 HH, HT, TH, TT 4가지가 되지만 순서를 고려하지 않으면(중복조합) HH, HT, TT 3가지가 된다. 이는 식 (2)의 좌변 관계가 아니다.
중복조합 공식은 어떻게 만들어야 할까? 제일 쉬운 방법은 흑기사(or 조커)를 이용하는 것이다. 예를 들면 순서를 고려하지 않고 중복해서 동전을 2번 던지는 것은 중복을 허락하지 않고 동전이 H(앞면), T(뒷면), A(흑기사) 세가지 경우를 가지는 것과 동일하다. 그러면, HT, HA, TA 3가지가 우리가 찾는 답이다.
최종답을 낼 때는 중복조합 규칙(순서를 바꾸어 같은 경우는 삭제)을 만족하도록 흑기사 A를 H나 T로 교체해야 한다. 즉, HA → HH, HA → HT 두가지가 가능하나 이미 HT는 제시되어 있으므로 HA → HH로 택한다. 마찬가지로 TA → TT로 택한다. 그러면 답은 HT, HH, TT가 된다.
좀더 컴퓨터 친화적으로 이야기하면 HT, HA, TA의 둘째항을 T → H, A → T가 되도록 바꾸면 된다.
동전을 3번 던진다면 동전은 H(앞면), T(뒷면), A(흑기사1), B(흑기사2) 네가지 경우를 가진다고 할 수 있다. 그러면, HTA, HTB, HAB, TAB 4가지가 답이 된다.
흑기사 A, B를 H나 T로 바꾸면 HTA → HTH, HTB → HTT, HAB → HHH, TAB → TTT가 된다.
컴퓨터 친화적으로 쓰면 HTA, HTB, HAB, TAB의 둘째항은 T → H, A → T, 세째항은 A → H, B → T가 되도록 바꾸면 쉽게 답을 낼 수 있다.
이를 일반화해 공식으로 만들면 식 (4)가 된다.

   perm4.png                               (4)

중복조합과 유사하게 실제 문제에서는 n과 r을 정하기 어려우므로 강제적으로 n = 1이라 가정하는 방법을 쓰자. n = 1이 되면 1Hr = rCr = 1이 되므로 경우의 수는 r에 관계없이 1이 된다.

[다음 읽을거리]
1. 이항정리
2. 행렬식

 

출처 : http://ghebook.blogspot.kr/2010/10/permutation-combination.html

?

공부 게시판

공부에 도움되는 글을 올려주세요.

List of Articles
번호 분류 제목 글쓴이 날짜 조회 수
공지 [공지] 공부 게시판 입니다. 처누 2003.08.18 934857
2516 모바일 일상에 쉽게 적용할 수 있는 수면 관리 앱 5가지 new JaeSoo 2025.12.18 1
2515 건강 매일 밤에 머리 감으면 일어나는 일ㅣ탈모 전문가가 알려주는 충격적인 진실ㅣ김주용 원장 1편ㅣ닥터딩요 JaeSoo 2025.12.11 24
2514 건강 다친 손가락에 끼우는 실리콘 손가락 file JaeSoo 2025.12.11 9
2513 연애 성적 취향에 대하여... JaeSoo 2025.12.09 45
2512 연애 fwb(Friends with Benefits)에 대해 JaeSoo 2025.12.09 51
2511 건강 자위가 잠자는 데 도움이됩니까? 알아봅시다! JaeSoo 2025.12.09 51
2510 건강 야동 실태보고서 JaeSoo 2025.12.09 25
2509 건강 불면증 해결을 위한 자위 활용 JaeSoo 2025.12.09 38
2508 연애 변호사가 보아온 상간남들의 공통점 file JaeSoo 2025.11.25 213
2507 윈도우즈 윈도우11 비밀번호 분실시 설정 변경방법 (Windows10 포함) JaeSoo 2025.11.06 206
2506 연애 홍콩 보내주다를 뜻하는 영어 표현 한가지를 노래를 통해 배워보자 file JaeSoo 2025.10.28 354
2505 생활 향수 잔향 기간별 구분 file JaeSoo 2025.10.28 288
2504 생활 Question about Korean - What does 홍콩을 보내다 mean? JaeSoo 2025.10.28 276
2503 유닉스/리눅스 리눅스 서버 설치 중 에러 "Failed to find a suitable stage1 device" JaeSoo 2025.10.03 325
2502 유닉스/리눅스 Linux 11 . Linux 설치 시 lvm 수동설정 JaeSoo 2025.10.03 293
2501 유닉스/리눅스 [Rocky Linux] 누구나 쉽게 따라하는 Rocky Linux 9.0 OS 다운로드 및 설치 방법~!! JaeSoo 2025.10.03 311
2500 유닉스/리눅스 Linux/Rocky Linux Rocky Linux : Composer 설치 JaeSoo 2025.09.29 324
2499 유닉스/리눅스 [Rocky Linux] 록키 리눅스 최신 업데이트 적용 방법 JaeSoo 2025.09.29 310
2498 유닉스/리눅스 rocky linux 커널 업데이트 JaeSoo 2025.09.29 354
2497 웹서버,WAS [Windows] OWASP ZAP 사용법 JaeSoo 2025.09.29 317
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 126 Next
/ 126


즐겨찾기 (가족)

JAESOO's HOMEPAGE


YOUNGAE's HOMEPAGE


장여은 홈페이지


장여희 홈페이지


장여원 홈페이지


즐겨찾기 (업무)

알리카페 홀릭

숭실대 컴퓨터 통신연구실 (서창진)

말레이시아 KL Sentral 한국인 GuestHouse


즐겨찾기 (취미)

어드민아이디

유에코 사랑회

아스가르드 좋은사람/나쁜사람

JServer.kr

제이서버 메타블로그

재수 티스토리


즐겨찾기 (강의, 커뮤니티)

재수 강의 홈페이지


한소리


VTMODE.COM


숭실대 인공지능학과


숭실대 통신연구실


베너